Integrodifferential Equations for Continuous Multiscale Wavelet Shrinkage
نویسندگان
چکیده
The relations between wavelet shrinkage and nonlinear diffusion for discontinuity-preserving signal denoising are fairly well-understood for singlescale wavelet shrinkage, but not for the practically relevant multiscale case. In this paper we show that 1-D multiscale continuous wavelet shrinkage can be linked to novel integrodifferential equations. They differ from nonlinear diffusion filtering and corresponding regularisation methods by the fact that they involve smoothed derivative operators and perform a weighted averaging over all scales. Moreover, by expressing the convolution-based smoothed derivative operators by power series of differential operators, we show that multiscale wavelet shrinkage can also be regarded as averaging over pseudodifferential equations.
منابع مشابه
Integrodifferential Equations for Multiscale Wavelet Shrinkage: The Discrete Case
We investigate the relations between wavelet shrinkage and integrodifferential equations for image simplification and denoising in the discrete case. Previous investigations in the continuous one-dimensional setting are transferred to the discrete multidimentional case. The key observation is that a wavelet transform can be understood as derivative operator in connection with convolution with a...
متن کاملMathematical concepts of multiscale smoothing
The starting point for this paper is the well known equivalence between convolution filtering with a rescaled Gaussian and the solution of the heat equation. In the first chapters we analyze the equivalence between multiscale convolution filtering, linear smoothing methods based on continuous wavelet transforms and the solutions of linear diffusion equations. I.e. we determine a wavelet ψ, resp...
متن کاملA partial differential equation for continuous non-linear shrinkage filtering and its application for analyzing MMG data
The starting point for this paper is the well known equivalence between convolution filtering with a rescaled Gaussian and the solution of the heat equation. In the first sections we analyze the equivalence between multiscale convolution filtering, linear smoothing methods based on continuous wavelet transforms and the solutions of linear diffusion equations. I.e. we determine a wavelet ψ, resp...
متن کاملMultiscale methods for data on graphs and irregular multidimensional situations
For regularly spaced one-dimensional data, wavelet shrinkage has proven to be a compelling method for non-parametric function estimation. We create three new multiscale methods that provide wavelet-like transforms both for data arising on graphs and for irregularly spaced spatial data in more than one dimension. The concept of scale still exists within these transforms, but as a continuous quan...
متن کاملImpulsive integrodifferential Equations and Measure of noncompactness
This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006